PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis

نویسندگان

  • Hyunmo Choi
  • Eunkyoo Oh
چکیده

As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl

As the major mechanism of plant growth and morphogenesis, cell elongation is controlled by many hormonal and environmental signals. How these signals are coordinated at the molecular level to ensure coherent cellular responses remains unclear. In this study, we illustrate a molecular circuit that integrates all major growth-regulating signals, including auxin, brassinosteroid, gibberellin, ligh...

متن کامل

DET1 and HY5 Control PIF4-Mediated Thermosensory Elongation Growth through Distinct Mechanisms

Plant growth and development are defined by environmental cues. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is the central signaling hub that integrates environmental cues, including light and temperature, to regulate growth and development. The thermosensory mechanisms controlling the PIF4-mediated temperature response, and its integration with other environmental response...

متن کامل

Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis.

Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant gr...

متن کامل

PIF4–Mediated Activation of YUCCA8 Expression Integrates Temperature into the Auxin Pathway in Regulating Arabidopsis Hypocotyl Growth

Higher plants adapt their growth to high temperature by a dramatic change in plant architecture. It has been shown that the transcriptional regulator phytochrome-interacting factor 4 (PIF4) and the phytohormone auxin are involved in the regulation of high temperature-induced hypocotyl elongation in Arabidopsis. Here we report that PIF4 regulates high temperature-induced hypocotyl elongation thr...

متن کامل

TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis

For maintenance of cellular homeostasis, the actions of growth-promoting hormones must be attenuated when nutrient and energy become limiting. The molecular mechanisms that coordinate hormone-dependent growth responses with nutrient availability remain poorly understood in plants [1, 2]. The target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates nutrien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2016